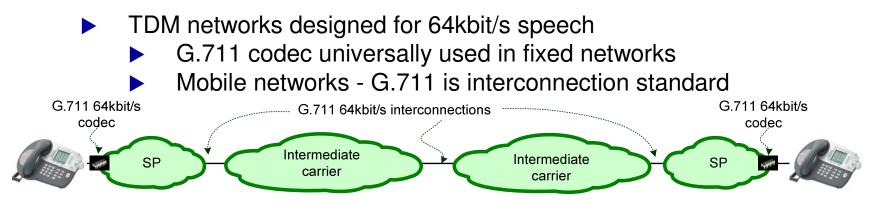
i3 forum

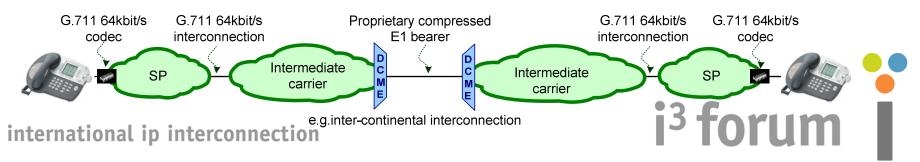
Codec Engineering: Guidelines for Designing Narrow-Band, Wide-Band and Low-Bit-Rate Codecs into International Voice Networks

Geoff Burrell

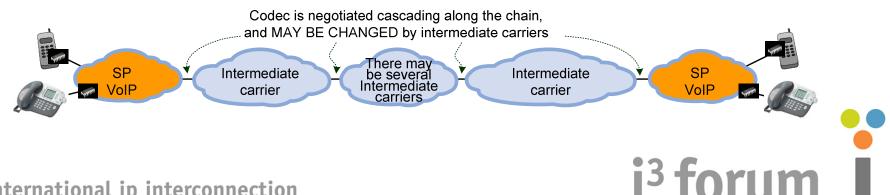
Editor, WS "Technical Aspects": Codecs Telecom New Zealand International


i3 forum Technical Workshop Warsaw, Poland (June 15th 2010) Ver. 1 (2010-6-10)

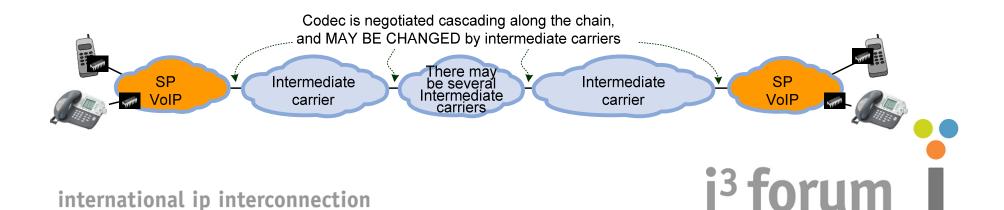
international ip interconnection


www.i3forum.org

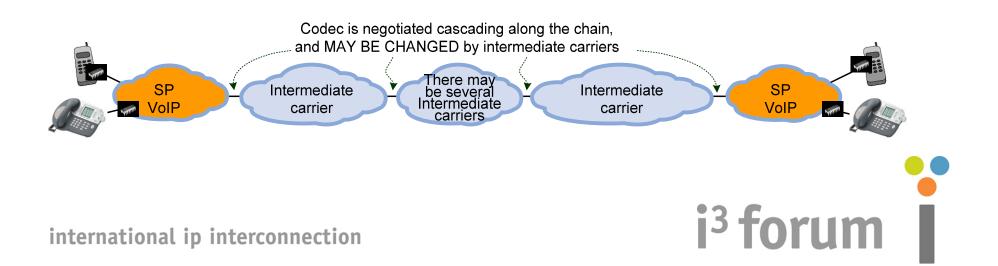
Why Are Codecs a Call Quality Issue with [1 / 2] International VoIP Networks?


- For inter-continental international networks, "voice compression" often used:
 - DCME transcoded to a lower bit rate codec and suppressed transmission of silence
 - Average voice transmission rates achieved
 - 16kbit/s (G.726 codec)
 - 8kbit/s (G.728 codec).
 - <u>Always</u> the switch interface was G.711 64kbit/s

Why Are Codecs a Call Quality Issue with International VoIP Networks?


VoIP has no common codec standard,

- more codecs now available,
- more being invented
- Codecs remain the primary responsibility of Service Providers
- Due to diversity of networks and codec choices in the World,
 - transcoding will occur on international calls
 - voice quality will be impacted
- codec is part of the call set-up negotiation


The Problem of Many Codecs

- Voice Engineering
 - Intermediate (usually international) carriers
 - may not have visibility of the end SP's
 - visibility is of the ingress and egress carriers networks only
 - may not know if transcoding has already occurred,
 - International carriers are the greatest affected by codecs (and IP transmission latency) but have little control over these design variables

End - to - End View is Required

- End to End, NOT Local
 - Iowering voice bit rate within a carrier network to save bandwidth looks attractive
 - ► This is WRONG EMPHASIS, leads to
 - Iost \$\$\$ because of customers disliking lower call quality
 - damages carriers reputation
 - End-to-end (meaning ear-to-mouth) approach <u>must</u> be taken
 - This includes cordless phone codecs!

Economic Impact of Poor Call Quality

- A good (natural) voice call means customers linger and just talk.
- Low voice quality means customers hang up early (revenue lost)
 - may "sink" deals won on basis of high quality parameters
 - loss of customers to competitors
 - extra load on call centres

MOSCQE (See later slide)	R-Factor (see later slide)	% of customers terminating call early	Loss on 3B minutes pa @ 1c/min margin, assuming ALOC is halved for customers terminating early
3.74	73	1%	\$150,000
3.6	70	1.7%	\$255,000
3.1	60	6%	\$900,000
2.58	50	18%	\$2,700,000

Simple impact of customers hanging up early

i³ forum

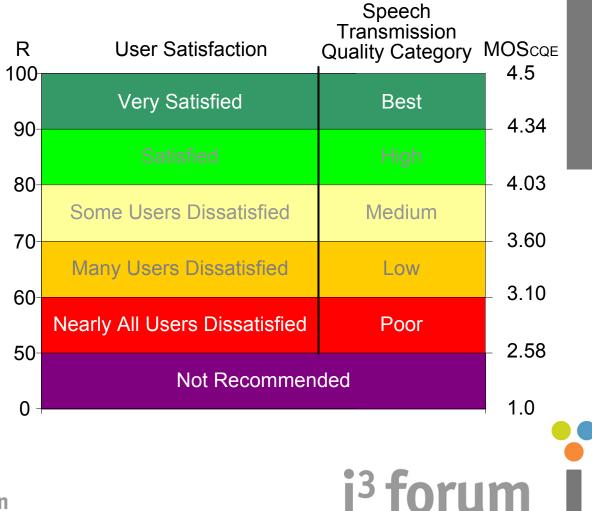
Main Impact

Codec Types and Call Quality

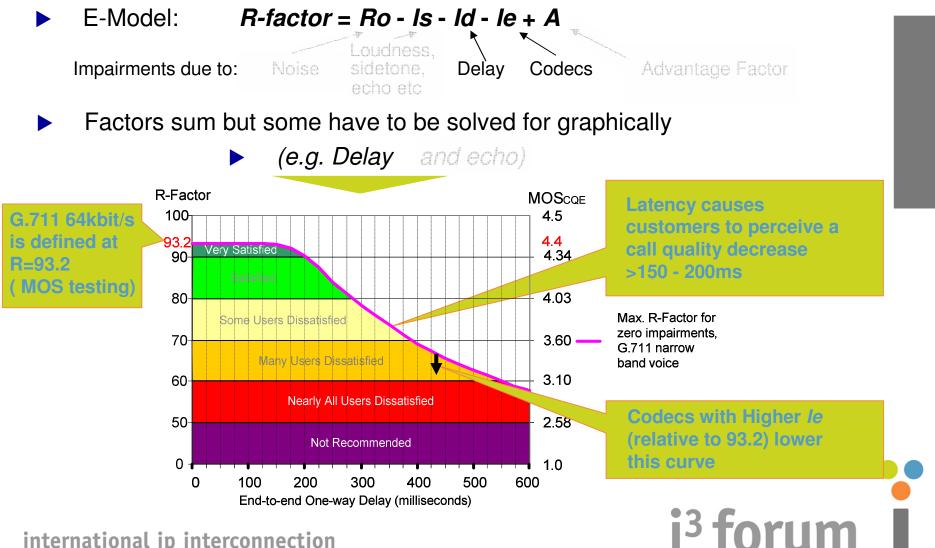
- Narrow band codecs (speech 300Hz 3.4KHz)
 - PSTN standard bandwidth
 - Iow tolerance to transcoding and latency
- Wideband codecs (speech 50Hz 7KHz)
 - improve speech quality
 - higher tolerance to transcoding
 - offsets the problems with NB
 - BUT new, and will take time to evolve into ALL networks
- LBR codecs (Low Bit Rate Narrow Band codecs)
 - required when low transmission rates are necessary because bandwidth is scarce or expensive,
 - Iowest tolerance to transcoding and latency

Standard Framework for Call Quality Planning – Voice Quality Measurement

- Measuring Voice Call Quality
 - ask people to classify calls to a MOS scale (Mean Opinion Score).
- MOS is
 - ► a customer choice,
 - its what customers actually think,
 - is the absolute reference.

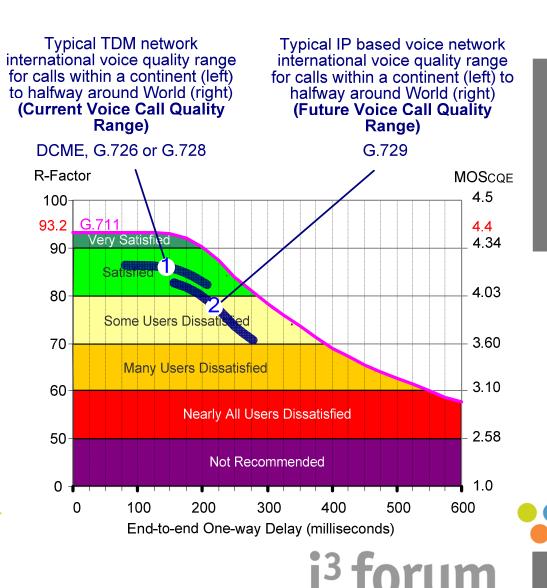

MOS	Classification		
5	Excellent		
4	Good		
3	Fair		
2	Poor		
1	Bad		

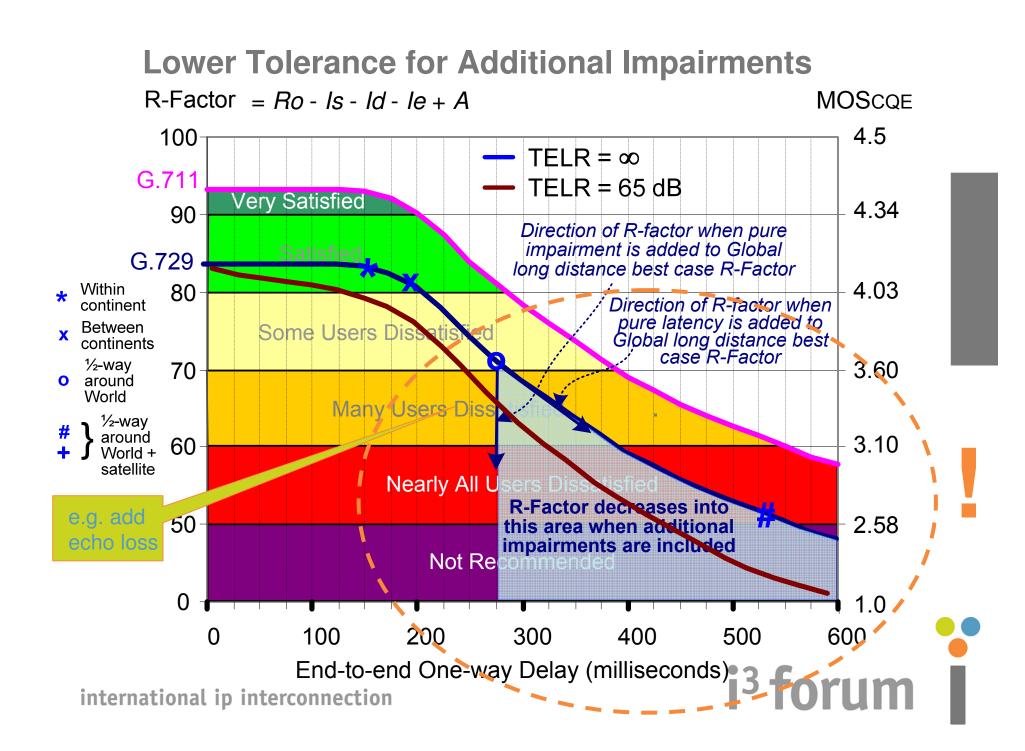
Scale of MOS values.

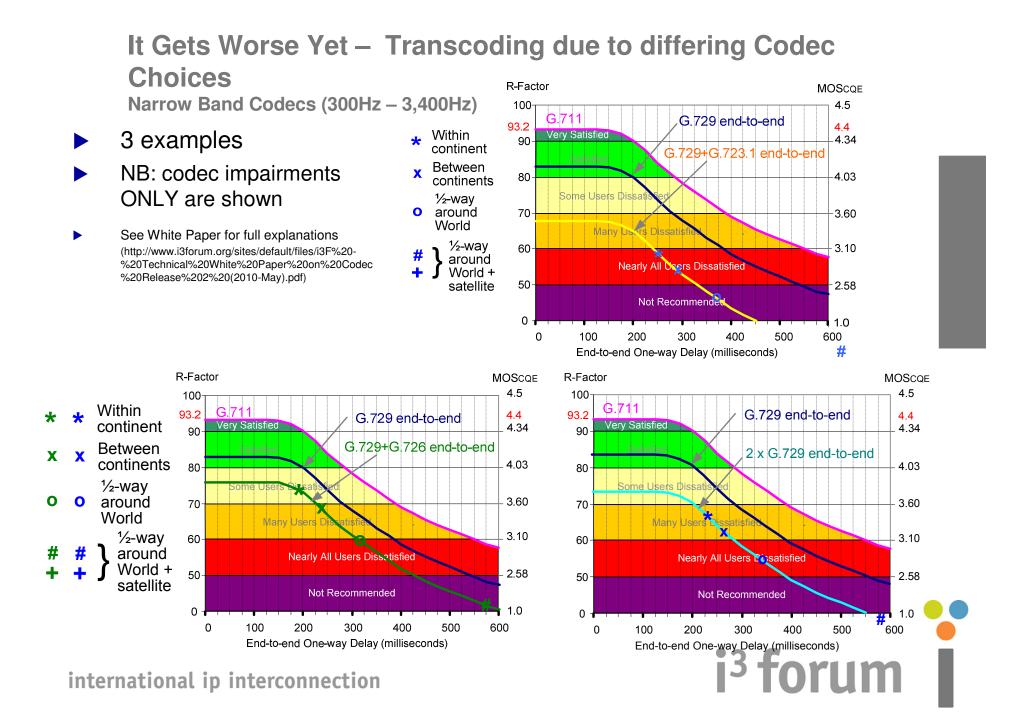


Standard Framework for Call Quality Planning – A Narrow Band Voice Quality Planning Tool

- Voice Quality predicted using an ITU-T developed E-Model
- E-model output is
 - R-Factor
 - used to predict MOS scores (called MOScQE)
- R-Factor calibrated in Voice Quality Bands (although Quality Scale is a continuum)


Standard Framework for Call Quality Planning – [2 / 2] A Narrow Band Voice Quality Planning Tool




Illustrating the VoIP Voice Quality Problem – Narrow Band Codecs (300Hz – 3,400Hz)

TDM

- Lower latency
- generally low impairment, low latency codecs
- delivers generally satisfied international voice customers
- ► DCME example ►
- Converting to VoIP
 - packetisation latencies
 - generally higher impairment, higher latency codecs,
 - drives lower customer satisfaction ratings for equivalent calls
 - ► e.g. G.729 ►

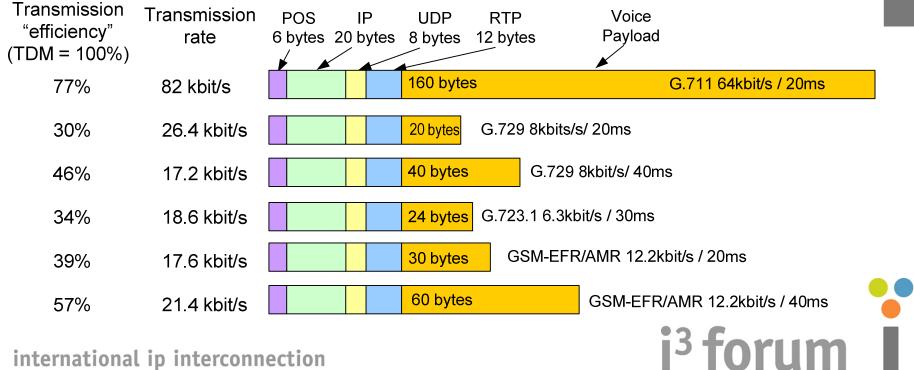
Wide Band Codecs - Help is on the Horizon

Deep Voices Crisp Sound

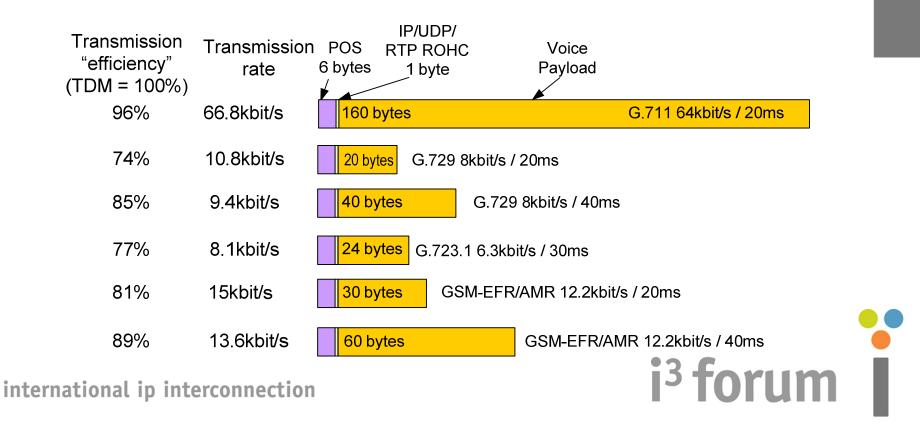
- ► Wideband Codecs (50Hz 7,000Hz)
 - more natural sound
 - greatly improved sensation of presence
 - better intelligibility
 - superior listening comfort.
- Improved speech quality offsets the transcoding problems with NB transmission
- BUT as yet NO E-model available to predict wideband voice call quality overall, apart from
 - wideband codec impairments characterised *le,wb*
 - R-factor scale extended to R = 129
 - CANNOT mix NB *le* values in
 - no noise, echo effects etc can yet be modelled

[2 / 2]

Wide Band Codecs – When Will They Help?


Wideband codecs are

- new to voice telecommunications,
- will be introduced by SP's when they deem necessary,
- are required <u>end-to-end</u>
- BUT improve international call quality considerably
- Universal use end-to-end seems a few years away yet.....


Low Bit Rate Codecs – Packet Transmission Overheads

- LBR codecs (narrow band codecs with Low Bit Rate)
 - low transmission rates are required when bandwidth is scarce or expensive.
 - packet overheads increase transmission rate (cost) but do not contribute to voice quality
 - reducing voice payload size to accommodate packet overheads reduces voice quality (NOT a recommended design approach)

Low Bandwidth Codecs – Packet Transmission Overheads reduced by IP/UDP/RTP compression

- ► IP/UDP/RTP headers total 40 bytes
- ► IP/UDP/RTP compression
 - ▶ RFC 2508 reduces this to 2 bytes,
 - RFC 3095 Robust Header Compression (ROHC) reduces this to 1 byte
- Implementable only on a single hop

Low Bandwidth Codecs – Voice Transmission Overheads reduced by not transmitting silence

- Voice conversations have silent periods (while listening)
- Why transmit silences?
 - ▶ fill the gaps with "comfort noise"
 - comfort noise is generated by dynamic reconstruction of background noise from transmission of very low bandwidth noise characterisation signal
 - called Voice Activity Detection /Discontinuous Transmission (VAD/DTX)
 - saves Bandwidth with trivial quality impact
- Typical speech activity factors of 50% are obtained with normal speech, approximately halving the transmission bandwidth

Low Bandwidth Codecs – Transmission bandwidth

Bandwidth comparisons

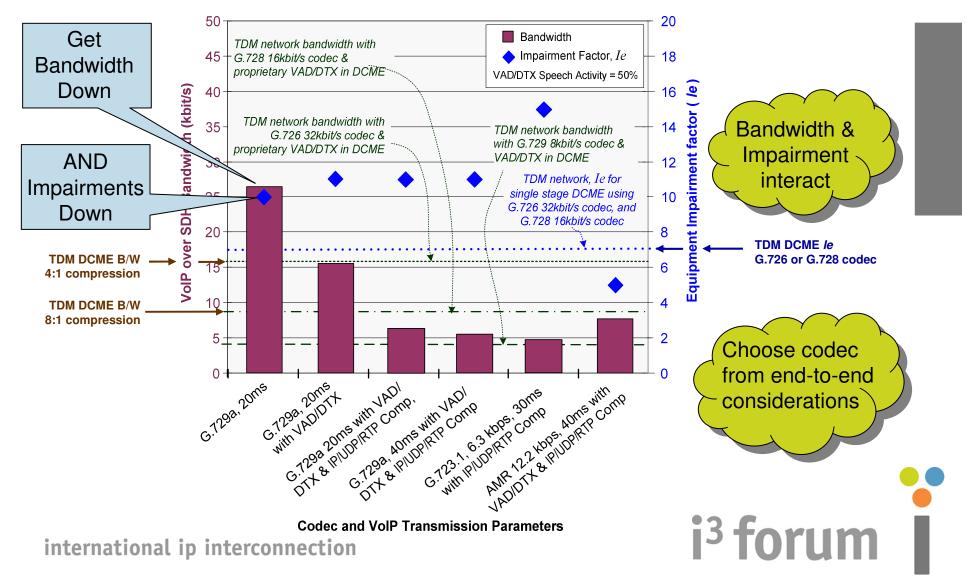
	Bandwidth per voice channel on SDH bearer (kbit/s)						
	TDM	VoIP					
		No IP/UDP/RTP compression		With IP/UDP/RTP compression			
Codec and DCME characteristics		no VAD/DTX	with VAD/DTX*	no VAD/DTX*	with VAD/DTX*		
G.711 64kbps	64	N/A	N/A	N/A	N/A		
DCME, G.726 32kbps + VAD/DTX*	16	N/A	N/A	N/A	N/A		
DCME, G.728 16kbps+ VAD/DTX*	8	N/A	N/A	N/A	N/A		
Codec and Packetisation Period							
G.711 64kbps / 20ms	N/A	82	43	66.8	34.4		
G.729 8kbps / 20ms	N/A	26.4	15	10.8	6.4		
G.729 8kbps / 40ms	N/A	17.2	11	9.4	5.6		
G.723.1 6.3kbit/s / 30ms	N/A	18.6	11.5	8.1	~5.0		
AMR 12.2kbit/s / 20ms	N/A	31	17.6	15	8.4		
AMR 12.2kbit/s / 40ms	N/A	21.4	13	13.6	7.6		

*50% Speech Activity assumed

Low Bandwidth Codecs – Transmission Cost

Cost Comparisons

	Monthly cost of voice channel on SDH bearer (USD) based on INTELSAT Std B antenna, Global Beam, 2Mbit/s IDR with 3/4 FEC, 5yr tariff					
	TDM	VolP				
		No IP/UDP/RTP compression		With IP/UDP/RTP compression		
Codec and DCME characteristics		no VAD/DTX	with VAD/DTX*	no VAD/DTX	with VAD/DTX*	
G.711 64kbps	\$630	N/A		N/A	N/A	
DCME, G.726 32kbps + VAD/DTX*	\$157	N/A		N/A	N/A	
DCME, G.728 16kbps+ VAD/DTX*	\$79	N/A		N/A	N/A	
Codec and Packetisation Period						
G.711 64kbps / 20ms	N/A	\$807	\$423	\$657	\$338	
G.729 8kbps / 20ms	N/A	\$260	\$148	\$106	\$63	
G.729 8kbps / 40ms	N/A	\$169	\$108	\$92	\$55	
G.723.1 6.3kbit/s / 30ms	N/A	\$183	\$113	\$80	\$49	
AMR 12.2kbit/s / 20ms	N/A	\$305	\$173	\$148	\$83	
AMR 12.2kbit/s / 40ms	N/A	\$210	\$128	\$134	\$75	
*50% Speech Activity assumed						


Finance Depts are used to these numbers

It is possible to engineer VoIP with similar costs

i³ forum

Low Bandwidth Codecs – Voice Call Quality/Bandwidth Tradeoff

Select LBR codec and transmission parameters with regard to end-end quality

Conclusions

- Narrow Band VoIP networks will provide lower quality international voice calls than TDM networks
- quality (all-cable) network calls to fall from "Users Satisfied" (regardless of international distance) to
 - intra region (e.g. Europe)
 - "Users Satisfied" without transcoding
 - *"Some/Many Users Dissatisfied"* with transcoding
 - Iong international calls such as New Zealand/Australia to UK/Europe
 - "Some/Many Users Dissatisfied" without transcoding
 - "Nearly All Users Dissatisfied" with transcoding
- end-to-end planning required
 - direct bilateral interconnections will offer more predictable quality
 - multiple downstream networks will generally present quality difficulty
- Longer term, wideband codecs
 - potentially compensate for quality lost in transcoding
 - their introduction by SP's should be encouraged

Codec and Transmission Choices

- select codecs with low algorithmic latency.
- choose shorter packetisation periods
- keep packet loss as low as possible (< 0,1%)</p>
- use Packet Loss Concealment whenever possible
- Avoid G.723.1 codec
- G.729 codec family offers a good balance of latency, bandwidth (cost) and voice quality
- Using the AMR codec in fixed networks would eliminate some transcoding impairments between fixed and mobile networks when serving Mobile SP's
- where occupied bandwidth is a critical cost parameter (satellite transmission)
 - select codecs with low bit rate and low *le* (balancing cost and voice quality end-to-end),
 - use Voice Activity Detection and Discontinuous Transmission (VAD/DTX),
 - consider translating packetisation period to higher values, such as 40ms,
 - implement IP/UDP/RTP compression

Transcoding

- Transcoding should be avoided unless absolutely necessary
- Many carriers end-to-end are likely to result in transcoding,
 - May render call quality completely unacceptable
 - Or even unintelligible
- Cooperation of all carriers and Service Providers in the call path will help maintain voice quality
- International Carriers should NOT transcode to save costs,
 - honour SP's codec choice where possible
 - different call Bandwidths could be tariffed differently
 - Satellite appears the exception where LBR codecs (PLUS other transmission techniques) appear necessary to justify costs
- Carrier/SP/Vendor cooperation is needed to achieve voice quality

Thank you!

