Development of IPX: Myth or Reality?

Patrick Mc lampy - CTO/Founder Acme Packet
Agenda

• IPX – Acme Packet Perspective
• IPX and LTE/VoLTE
The IPX Vision
Unified service evolves
- any device, any one, any time

Text Voice Data Video Presence + IM
“Service provider” choices will increase

Over the top

Service provider

Enterprise
Cloud services will dominate

Most services are already in service provider clouds

- Mobile
- Residential
- IP Centrex
- SIP trunking
- Over-the-top

IP PBX and UC servers will vanish from enterprise premise, except the largest, communications - critical enterprises will build their own cloud

Right network plumbing will be critical - bandwidth & QoS, identify, privacy
Network transport choices increase

Internet

IPX (Federnet)

Future (Federnet 2.0)
Mobile access will dominate
“IP” – identity and privacy become critical
A future of increasing choices

- Unified service evolves – any where, any one, any time
- “Service provider” choices will increase
- Cloud services will dominate
- Network transport choices will increase
- Mobile access will dominate
- “IP” – identity and privacy – become critical
More choices requires more mediation and control at borders

1. In IP, we trust no one
2. Addresses and identities will forever be heterogeneous
3. Competitive Service Offerings may involve other protocols besides SIP
4. Codecs will never converge to a couple - audio & video
5. Unlimited bandwidth, QoS & signaling resources will forever be a myth
6. Some sessions are more important/valuable
7. No one will be allowed to do anything they want
8. IP regulatory compliance requirements will increase
9. Service provider business models will never be homogenous
IPX – A New Transport Choice

IPX Network Architecture

• IPX network architecture is a private IP backbone network with service-aware elements (IPX Proxy)
 – Not-accessible by the Internet
 – IP backbone network is the current GRX
• IPX Proxies are key to support multilateral/hub connectivity in a scalable and efficient manner
• At the border between the service provider there will be a border element (SBC, soft-MSC, or SS/MG)
Why support IPX

• Avoid becoming a dumb pipe with low value and low margins
• Unlike public Internet, IPX provides interconnection and transit services with assured security and controlled QoS
• Compelling value proposition:
 – Simplified operations
 – Common charging principle
 – SLAs
 – Multiple connectivity models
• IPX carrier can provide additional services beyond transit
 – Transcoding
 – Protocol interworking
 – ENUM & number resolution
Why should an MNO/FNO use an IPX carrier?

• Assure end-to-end delivery of VoIP and interactive IP communications
 – Packet voice (SIP, SIP-I)
 – RCS Services
 • Instant messaging and presence
 • Video sharing
 • Image sharing
• Service Hub mode: simplified operations
 – Cascade billing
 – Contract with few IPX carriers instead of 100s of Service Providers (MNO/FNO)
 • Long distance and interconnection with small players
• IPX services are standardized
 – Common charging principle
 – Technically inter-operable end to end
• Agreements specified in a Contract Service Schedule containing
 – SLAs
 – Connectivity model
 – Operator interconnection list
Going beyond voice: RCS and IPX

(animated slide)

IM
MSRP
XDMS

SIP (Packet Voice, Video Share, SMS)

IMS

IPX

IMS

SIP (Video Share, MSRP, Presence)
HTTP (XCAP, SMTP)
SIP (Packet Voice)

Broadband User

IP-SM-GW

MAP

Packet Voice SIP/SIP-I

Packet Voice SIP

CS-voice SMS

Acme Packet

CONFIDENTIAL - IPX Solution Overview
i3 Forum’s vision of IPX model

- The i3 Forum Carriers endorse the basic IPX concepts around having a reliable, trusted, secure and quality controlled international (voice) service
- Also the commercial requirements are endorsed
- More pragmatic and realistic approach in certain topics
 - Security to be provided by Border Functions (SBCs)
 - Quality-of-Service control
 - Break-in/break-out
Future of IPX model

- Direct connectivity to Large Enterprises and Private Federations
- Direct connectivity to OTT Service Providers
- Evolution of IPX to Service Delivery Network (SDN)
- Large emphasis on Video and OTT Services
LTE data roaming

- All data is “home routed” – i.e. sent to the home network
- S6a Diameter interface – control plane for user information
- S8 interface – user plane for data
 - GTP (Generic Tunneling Protocol) or
 - PMIP (Proxy Mobile IP)
 - Not handled by PEC
Net-Net Policy Exchange Controller

- **Policy** – authorization, location, charging and service profile information using Diameter signaling
- **Exchange** – policy information sent between network elements or across network boundaries
- **Control** – security, interoperability, routing & aggregation of Diameter signaling messages

Standards compliant
- RFC 3588 Diameter agent (relay or proxy)
- 3GPP Diameter Routing Agent (DRA)
- GSMA Diameter Edge Agent (DEA)
But in Reality – 802.11 offload may be preferred

- 802.11 WIFI/Hotspots
- Home/Business/Commercial/Municipal Networks
- DHCP Universal
- Orthogonal Billing/Privacy/Security Schemes
- Very High Capacity
Roaming for Services in IMS

- There are various approaches to roaming in IMS:
 - Home routed with data backhaul to home network (existing data model)
 - Distributed policy control with policy interfaces
 - Visited P-CSCF with policy control in visited network
 - Visited services with IMS core in visited network
- One Voice / IR.92 selected Visited P-CSCF model
 - Provides strong balance of visited control and home visibility/services

![Diagram showing various roaming models in IMS](image)
Pragmatic pure IP connectivity may be preferred

- Services will be branded and unique
 - Delivered over the top of other IP Access Networks to ensure uniform delivery
 - Universal Interop at the SIP layer not possible in near future
- Current Network Operators will be OTT Reachable
 - Provide universal access to services
 - Requirement for other devices/networks
- Charging for data roaming only
- Possibly separate HSS for Data & Services
- Supports Policy & Charging
Data Center Approach to IMS

• Deploy Data Centers
 – Create a Service Delivery Network
 – Has Public Addresses
 – Universally reachable

• All applications must work everywhere
 – Must work across all access networks

• Single-Sign On Required
 – Phone & Service must easily move between:
 - Different LTE providers
 - Different IP Access Networks (802.11 reachable)
 – Avoid Re-authentication
 – Retains service context with no loss of service
 – Support 3G Roaming (ATCF)

• EPC Role Redefined
 – Only an Access Network
 – No Service Infrastructure
 – No Service participation
 – Roaming is for Data Only
VoLTE Conclusions for i3Forum

• Current Roaming models are impractical, and not likely to survive long term
 – Backhaul of bandwidth too expensive
 – SIP UA Universal Interoperability not likely soon
 – Service Differentiation by carriers not possible

• IPX Opportunities in LTE
 – Access/Authentication/Identity/Trust during roaming
 – Charging during roaming
 – Connections to existing 3G
 – Connections between LTE Providers
 – PSTN Terminations
 – Connections to Enterprises
 – Connections to Federations