Alessandro Forcina

Technical Aspects Workstream Chairman Telecom Italia Sparkle

3rd Annual i3Forum Conference The Future is All IP

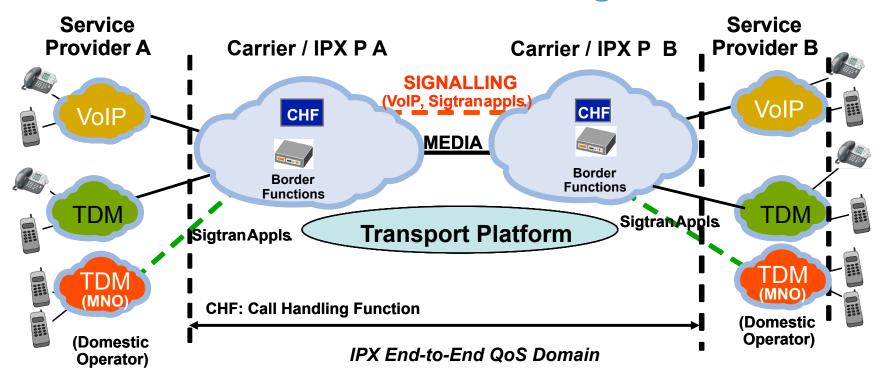
May 17, 2012 Chicago

QoS Measurement in Int.nal Voice Service

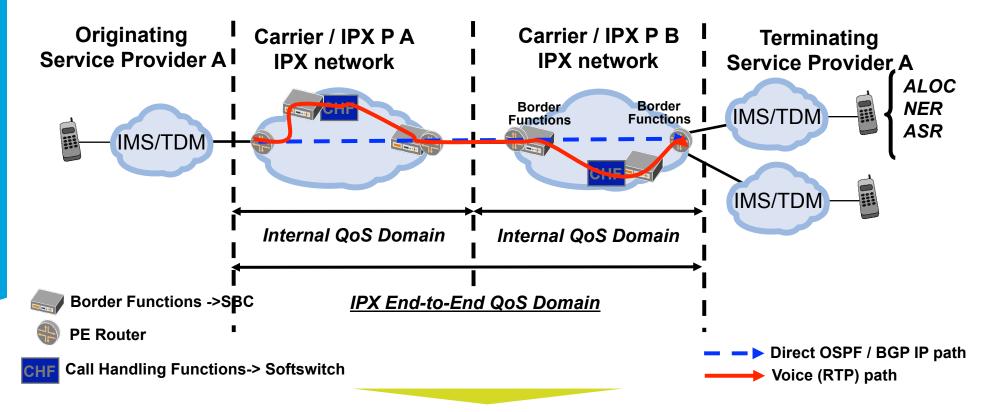
presented by

Alessandro Forcina

(i3 Forum WS "Technical Aspects" Chairman)
TELECOM ITALIA SPARKLE



- The GSMA Requirements
- The RTCP methodology
- Suggested Methodologies
 - "Aggregation" Scheme
 - "Media Loopback" Methodologies
- Proposed i3f guideline


General Reference Configuration

- More than 2 carriers can be present in the end-to-end segment
- Border functions are not always located at the carrier's network edge -> €€ IMPACT
- Measurement of traditional Voice (e.g. ALOC, ASR, NER) parameters spans up to final user -> NO PROBLEM

GSMA requirements (PVI AA.81)

 The RTP path of the voice service may be different than the "direct OSPF/ BGP" IP path of the data service

- GSMA (AA.81): "Transport (IP) Quality... shall be measured and reported for the path carrying PVI service" -> Mutual trust among Carriers / IPX Providers
- RT Delay, Packet Loss, Packet Jitter -> MOS (Mean Opinion Score)

HOW to achieve QoS Control end-to-end? Active vs. Passive Measurement Methodologies

Active

Methodology: Measurement by actively setting up test sessions across test domain

Pros:

- Can also provide MOS_{COE}
- Control of measurement domain
- Other metrics available

Cons:

- Not always representative of real traffic path
- Large number of sessions may be required to provide full coverage e.g. N² problem

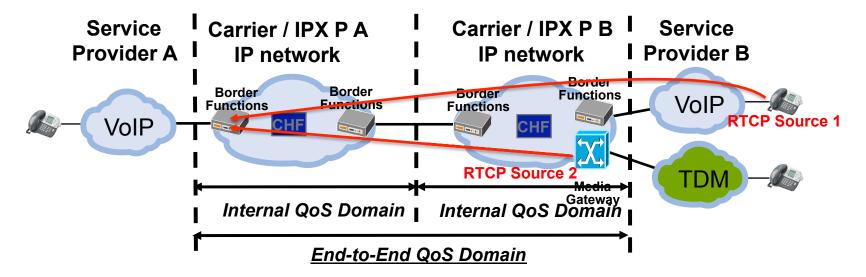
Passive

Methodology: Measurement by passively monitoring traffic sessions across the test domain

Pros:

- MOS_{COE}
- Accurate representation of real performance
- Easy to configure
- Measurements easy to analyze

Cons:


- Uncertain control of measurement domain
- Limited diagnostic ability

Whatever the methodology is, carriers have to invest at the network layer and for development of the OSS/BSS capabilities

An immediate answer: using RTCP (RTP Control Protocol)

PROS:

- based on real traffic -> accurate measurement
- no need of new standard
- available (as an option) in SBC
- calculates MOS_{COE} from the R-Factor /E-model
- delay, jitter, loss from RTCP sender and receiver reports

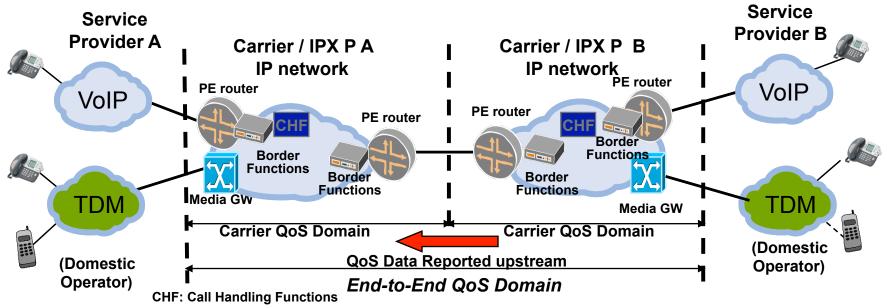
It is not possible to distinguish the location of the RTP end-point

No reliable, accurate solution is available

- The GSMA Requirements
- The RTCP methodology
- Suggested Methodologies
 - "Aggregation" Scheme
 - "Media Loopback" Methodologies
- Proposed i3f guideline

i3f Solution Requirements

The selected methodology should be:

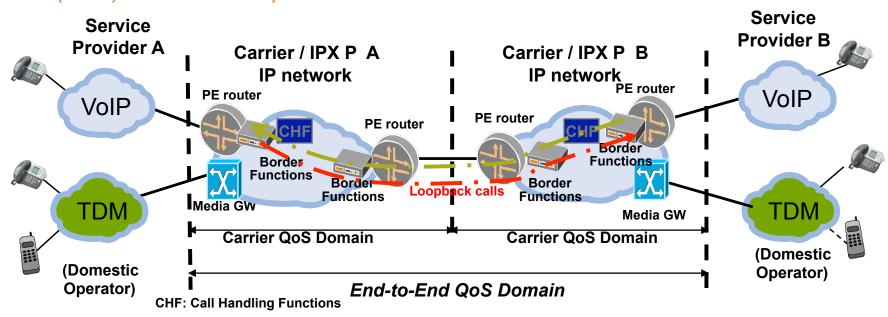

- "controllable" for a full set of transport parameters (provide measurement for identifiable domain(s))
- active or passive
- not vendor proprietary but with a broad industry support
- preferably integrated into existing equipment
- based on recognized standard i.e. from IETF/ITU-T
- relatively easy to integrate into OSS/BSS chain
- with a limited/reasonable deployment overhead
- capable to provide MOS_{CQE}
- capable to assist with SLA monitoring and troubleshooting
- capable in "supporting" at least Bilateral and IPX use cases

Activity carried out in parallel with vendors (2 open workshop plus constant contacts) and MNO representatives on behalf GSMA

www.i3forum.org

QoS Methodologies: Quality Measurement Aggregation

• Each carrier monitors quality across their internal QoS domain using their chosen mechanism (e.g. probe servers or RTCP)



KPIs are computed **AGGREGATING** the values measured by each carrier / IPX P.

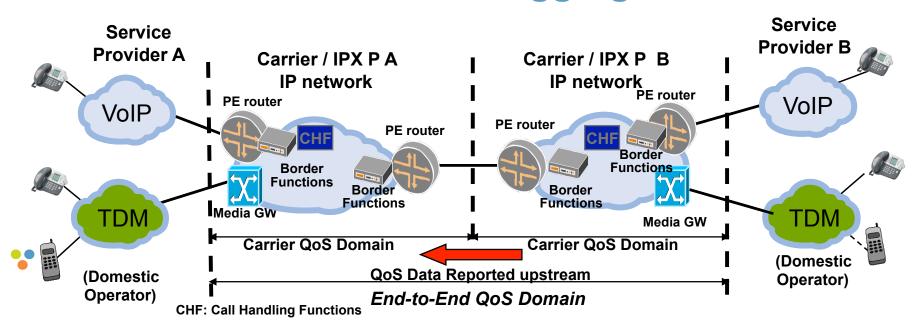
- Delay: estimated by adding up the delay of each carrier network
- Loss: estimated as the complement of joint probability of the event "Successful Packet Transmission"
- Jitter: no aggregation scheme. Jitter measured by the last carrier is provided

QoS Methodologies: Media Loop-back

 The Border Functions (i.e. SBC) make testing calls to dummy numbers terminated to the last SBC present in the carrier domain, based on *Draft IETF* mmusic-media-loopback-18 "An Extension to the Session Description Protocol (SDP) for Media Loopback"

- Encapsulated scheme: encapsulated source RTP sent back to sender
- for MOS_{CQE} (R-Factor / E-model) computation: one way delay is needed so the two transmission paths should be symmetrical

- The GSMA Requirements
- The RTCP methodology
- Suggested Methodologies
 - "Aggregation" Scheme
 - "Media Loopback" Methodologies
- Proposed i3f guideline



Proposed i3f guideline: 5 principles

- P1: i3 recognises GSMA requirements of E2E QoS measurement. This task, today, is challenging
- P2: In case of a 1 single Carrier / IPX Provider domain the solution is based on
 - Delay via RTCP (but RTP via external probes can be used)
 - Loss via RTP
 - Jitter via RTP
- which allows to compute MOS_{COE} via R-Factor/E-Model
- P3: In case of a 2 Carriers / IPX Providers domain the today recommended solution is based on Aggregation
- P4: In case of a 2 Carriers / IPX Providers domain the future recommended solution is based on media Loopback – encapsulated scheme
- **P5**: Service parameters (ASR, ALOC, NER,) can be measured as per requirement following "traditional" schemes

www.i3forum.org

P3: TODAY solution for multiple networks domain based on Aggregation

Methodology widely used in current IPX trials

Some issues:

- How to pass QoS data?
- Jitter values cannot be worked out by aggregation

P4: FUTURE solution for multiple networks domain based on Media Loop-back


Some issues:

- Carrier B has to allow dummy calls -> mutual trust
- Which number to be called (Tel URI or Sip URI)? And belonging to whom?
- Large number of loopback sessions is required. It increases with a quadratic law.

Assuming fully meshed interconnection network

Overestimation

N_IPXP	20,00
N_POP/IPXP	8,00
N_Call/h	2,00
minutes/Call	0,50
N_Calls/day/pop	7.632,00
N_calls/day/IPXP	61.056,00
N_minutes/day/IPXP	30.528,00
N_minutes/month/IPXP	915.840,00
N_minutes/year/IPXP	10.990.080,00
N minutes/day/IPXdomain	610.560,00
N_minutes/month/IPXdomain	18.316.800,00

Thank You

