Routing & Addressing: Basic Principles for Alternative Services

Jeff Li
i3 WS "Technical Aspects"
Rogers Telecom

I3 Forum, 1st Technical Workshop Warsaw, June 15th – 16th 2010 Ver. 1 (2010-6-16)

i³ forum

i3 Objective and Progress Updates

Objectives

- ✓ Support alternative services to explore new revenue opportunities
- ✓ Allow carriers to exchange addressing and service attribute information
- ✓ Optimize carrier routing & addressing schemes
- Evolve from country-to-country routing to network-to-network routing
- ✓ Assist effective bilateral/multilateral traffic exchange

▶ Progress Updates

- √ i3 carrier routing and addressing discussion started in late 2008
- ✓ Documents published in May 2010
 - ✓ i3 Forum WS "Services" Routing and Addressing Services for International Interconnections over IP (V 1) May 2010
 - ✓ i3 Forum WS "Technical" White Paper Techniques for Carriers' Advanced Routing and Addressing Schemes (Rel 1.0) May 2010
 - ✓ http://www.i3forum.org/library

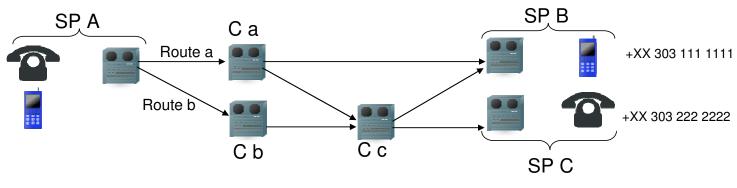
Alternative Service Opportunities

Alternative Services

- Onnet routing opportunity with
 - Terminating service provider network
 - Exclusive carrier network representing the underlying service providers
- ✓ Value-added services
 - ✓ E.g. leveraging presence information to pre-determine terminating party status.
- Call filtering based on end user and underlying carrier capabilities
- ✓ CLI validation verifying the sending network's ownership of the number
- ✓ Wideband calls via capable carriers to supportable end devices

Required Routing Information

- ✓ Terminating network serving dialed E.164 number
 - Number portability corrected data or service provider ID
 - Solutions available in some countries but vary by country and technology
- ✓ Terminating device capabilities
 - ✓ Phone types: fixed, mobile, VoIP, TDM, wideband, and narrowband
 - ✓ Supported services: SMS, PSTN, FAX/IFAX etc.


Carrier Routing Decision

Routing Decision Variables

- ✓ Business commitment, e.g. traffic volume commitment
- Business cost optimization, e.g. Least Cost Routing
- Capacity availability
- Quality parameters
- ✓ Service requested
- Quality requested
- ✓ Technology awareness, e.g. end-to-end IP, special codec support

Routing Decisions Managed by Carriers

✓ To identify optimal route rather than the most direct route

Advanced Routing and Addressing Schemes

Service Requirements

- Standard interface for data exchange with international operators
- Standard information presentation format and query interfaces
- Common language for data interpretation
- Flexible commercial models to upload, query, and exchange data while considering local regulatory rules
 - ✓ Privacy and confidentiality of consumer information

Query and Provisioning Interfaces

Information to be Stored and Exchanged

General Requirements, Security, Partitioning, etc.

Data Exchange Architecture

international ip interconnection

Query and Provisioning Interfaces

Query Interfaces

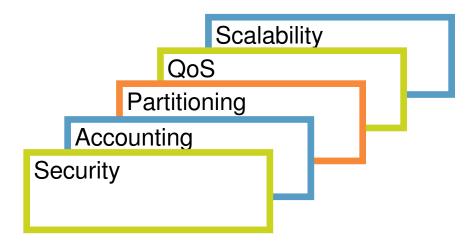
- Four alternatives studied
 - ✓ ENUM
 - ✓ SIP Redirect
 - ✓ SS7 MAP/TCAP
 - ✓ DIAMETER
- ENUM is recommended
 - ✓ IETF RFC 3761 & 4769
 - ✓ Tel URI or SIP URI
 - Number portability corrected info
 - ✓ Service info
- ✓ SIP Re-direct is recommended
 - When ENUM is not supported
 - Service Provider ID based routing complexity
 - ✓ Lack of multiple service types

Provisioning Interfaces

- Data upload to registry
- Data download from registry
- Other reference interfaces
 - Existing carrier federation
 - ✓ Other consortium registry
 - Selected national NPDB
 - ✓ Selected regional NPDB
- ✓ Some available standards
 - ✓ IETF
 - ✓ CableLabs
 - Vendor defined interfaces

Information to be Stored and Exchanged

International Service Provider Identity (SPID)


- ✓ Int'l SPID as input to carrier routing decision
 - ✓ Routing decisions remain within carrier domain
 - Carriers map SP to a carrier or a group of carriers for routing
- ✓ Universally consistent SPID scheme requirement
 - Some recommendations available but no industry-wide acceptance
 - Single code per service provider is preferred
 - ✓ ITU Study Group 2 Effort and ITU Recommendations M.1400
 - ✓ IANA Enterprise Numbers (IETF RFC 2578)
 - ✓ i3 continues monitoring the industry development on SPID schemes

Other Data Objects

- ✓ Public Identity E.164 number or number ranges
- ✓ End User Service Objects
- Data Source Identity for shared database
- ✓ Virtual User Identity Network-free VoIP provider, or an enterprise, not necessarily the Service Provider of record

General Requirements

Data Partitioning Requirements

- Vertical partitioning
 - A party is permitted to query only a set of numbers or addresses
 - ✓ A party is permitted to query and replicate a set of numbers or addresses.
- Horizontal partitioning
 - A party is permitted to query or replicate a subset of the service attributes
- ► Security, Accounting, QoS and Scalability Requirements
 - Refer to the white paper

Summary

▶ Carrier Community Requirements

- ✓ Evolving the traditional E.164 country code and number block based routing
- Optimizing traffic routing leveraging number portability corrected data
- Creating alternative service opportunities using service based routing
- Standardizing the approach is critical for the carrier community

Unified Effort from the Industry

- Development of a universal standard for service provider ID
- Definition of required service and capability information
- ✓ Integration of SP ID, number portability, and service attributes into a form suitable for use by carriers' routing optimization systems
- Suitable architecture for carriers to exchange routing and addressing information

